Contribution of ATM and ATR to the resistance of glioblastoma and malignant melanoma cells to the methylating anticancer drug temozolomide.

نویسندگان

  • Marcus Eich
  • Wynand Paul Roos
  • Teodora Nikolova
  • Bernd Kaina
چکیده

The major cytotoxic DNA adduct induced by temozolomide and other methylating agents used in malignant glioma and metastasized melanoma therapy is O(6)-methylguanine (O(6)-MeG). This primary DNA damage is converted by mismatch repair into secondary lesions, which block replication and in turn induce DNA double-strand breaks that trigger the DNA damage response (DDR). Key upstream players in the DDR are the phosphoinositide 3-kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). Here, we addressed the question of the importance of ATM and ATR in the cell death response following temozolomide. We show that (i) ATM- and ATR-mutated cells are hypersensitive to temozolomide, (ii) O(6)-MeG triggers ATM and ATR activation, (iii) knockdown of ATM and ATR enhances cell kill in gliobalstoma and malignant melanoma cells with a stronger and significant effect in ATR knockdown cells, (iv) ATR, but not ATM, knockdown abolished phosphorylation of H2AX, CHK1, and CHK2 in glioma cells, and (v) temozolomide-induced cell death was more prominently enhanced by pharmacologic inhibition of CHK1 compared with CHK2. The data suggest that ATM and, even better, ATR inhibition is a useful strategy in sensitizing cancer cells to temozolomide and presumably also other anticancer drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cancer Therapeutics Insights Contribution of ATM and ATR to the Resistance of Glioblastoma and Malignant Melanoma Cells to the Methylating Anticancer Drug Temozolomide

The major cytotoxic DNA adduct induced by temozolomide and other methylating agents used in malignant glioma and metastasized melanoma therapy is O-methylguanine (O-MeG). This primary DNA damage is converted by mismatch repair into secondary lesions, which block replication and in turn induce DNA double-strand breaks that trigger the DNA damage response (DDR). Key upstream players in the DDR ar...

متن کامل

Relationship between LncRNA THRIL expression controlling TNF-alpha pathway in glioblastoma cell line under temozolomide treatment

Background: Glioma is one of the most common and deadliest primary malignant tumors in the brain. A large part of the gene expression products are non-coding protein RNA. LncRNA THRIL gene is an antisense LncRNA and one of the most important mediators of the NF-KB signaling pathway, that express in many tissues of the body, including the central nerve system (CNS). The aim of the present study ...

متن کامل

Formulation of temozolomide by folic acid-conjugated tri-block copolymer nanoparticles for targeted drug delivery

Introduction: Glioblastoma multiforme (GBM) is the most frequent primary malignant tumor of the brain. But, the treatment of GBM is one of the most problems in cancer therapy because of poor drug penetration across the blood-brain barrier (BBB). Targeting drug delivery system and conjugating targeting moieties was recognized to overcome the poor penetration of chemotherapy drug...

متن کامل

Intrinsic anticancer drug resistance of malignant melanoma cells is abrogated by IFN-β and valproic acid.

Malignant melanoma, once metastasized, has a dismal prognosis because of intrinsic resistance to anticancer drugs. First-line therapy includes the methylating agents dacarbazine and temozolomide. Although DNA mismatch repair and O(6)-methylguanine (O(6)MeG)-DNA methyltransferase (MGMT) are key determinants of cellular resistance to these drugs, there is no correlation between these markers and ...

متن کامل

DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system.

The mammalian mismatch repair (MMR) system has been implicated in activation of the G(2) checkpoint induced by methylating agents. In an attempt to identify the signaling events accompanying this phenomenon, we studied the response of MMR-proficient and -deficient cells to treatment with the methylating agent temozolomide (TMZ). At low TMZ concentrations, MMR-proficient cells were growth-inhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 12 11  شماره 

صفحات  -

تاریخ انتشار 2013